Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis.
نویسندگان
چکیده
We provide here the first direct evidence that D-aspartyl residues in peptides are substrates for the L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (EC 2.1.1.77). We do this by showing that D-aspartic acid beta-methyl ester can be isolated from carboxypeptidase Y digests of enzymatically methylated D-aspartyl-containing synthetic peptides. The specificity of this reaction is supported by the lack of methylation of L-aspartyl-containing peptides under similar conditions. Methylation of D-aspartyl residues in synthetic peptides was not observed previously because with Km values ranging from 2.5 to 4.8 mM, these peptides are recognized by the methyltransferase with 700-10,000-fold lower affinity than are their L-isoaspartyl-containing counterparts. The physiological significance of D-aspartyl methylation was investigated in two ways. First, analysis of in situ methylated human erythrocyte proteins showed that at least 22% of the methyl groups associated with the proteins ankyrin and band 4.1 are on D-aspartyl residues, suggesting that D-aspartyl methylation is an important function of the methyltransferase in vivo. Second, mathematical modeling of the protein aging and methylation reactions occurring in intact erythrocytes indicated that the accumulation of D-aspartyl residues can be reduced as much as 2-5-fold by the methyltransferase activity. Although this reduction is much less than that predicted for L-isoaspartyl residues, it may be significant in maintaining functional proteins throughout the 120-day life span of these cells.
منابع مشابه
Mammalian brain and erythrocyte carboxyl methyltransferases are similar enzymes that recognize both D-aspartyl and L-isoaspartyl residues in structurally altered protein substrates.
Two purified isozymes of protein carboxyl methyltransferase from bovine brain catalyze the substoichiometric transfer of methyl groups in vitro from S-adenosyl-L-[methyl-3H]methionine to several erythrocyte membrane proteins, which include bands 2.1, 3, and 4.1, as well as several integral membrane polypeptides. D-Aspartic acid beta-[3H]methyl ester has been isolated from proteolytic digests of...
متن کامل13 Protein L-isoaspartyl, D-aspartyl O-methyltransferases: Catalysts for protein repair.
Protein L-isoaspartyl, D-aspartyl O-methyltransferases (PIMTs) are ancient enzymes distributed through all phylogenetic domains. PIMTs catalyze the methylation of L-isoaspartyl, and to a lesser extent D-aspartyl, residues arising from the spontaneous deamidation and isomerization of protein asparaginyl and aspartyl residues. PIMTs catalyze the methylation of isoaspartyl residues in a large numb...
متن کاملNon-repair pathways for minimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae.
The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharom...
متن کاملConversion of isoaspartyl peptides to normal peptides: implications for the cellular repair of damaged proteins.
The hypothesis that cellular protein carboxyl-methylation reactions recognize altered aspartyl residues as part of a protein repair pathway has been tested in an in vitro system using tetragastrin (Trp-Met-Asp-Phe-NH2) as a model sequence. The L-isoaspartyl form of tetragastrin, where the phenylalanine residue is linked to the side-chain carboxyl group of the aspartate residue ([iso-Asp3]tetrag...
متن کاملCrystal structure of a protein repair methyltransferase from Pyrococcus furiosus with its L-isoaspartyl peptide substrate.
Protein L-isoaspartyl (D-aspartyl) methyltransferases (EC 2.1.1.77) are found in almost all organisms. These enzymes catalyze the S-adenosylmethionine (AdoMet)-dependent methylation of isomerized and racemized aspartyl residues in age-damaged proteins as part of an essential protein repair process. Here, we report crystal structures of the repair methyltransferase at resolutions up to 1.2 A fro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 267 9 شماره
صفحات -
تاریخ انتشار 1992